Build a Better Lunch Table

Jan 01, 2010
By Pharmaceutical Executive Editors

Frank Brown
Before the emergence of the mammoth database, email, electronic laboratory notebooks (ELNs), and global Centers of Excellence, innovation in pharmaceutical research was actually centered around the company lunch table. That was where project leaders—pharmacologists, chemists, biologists, and other select stakeholders—would gather to share knowledge. Free-form interactions about experiments crossed disciplinary boundaries, with the intersection of ideas opening up new avenues for exploration and resulting in rich insights and faster discoveries.

Fast-forward a few decades. Thanks to the swift pace of technological change, our ability to generate data has increased exponentially. But now there's too much content and not enough context. Raw information dumped into databases has replaced knowledge-driven categorization and intelligence capabilities that dominated the lunch table; disjointed processes and disparate data silos have replaced local project ownership and interdisciplinary collaboration.

To usher in a new era of research innovation, pharma organizations need to re-embrace the concept of the company lunch table, but on a larger, more technologically advanced scale.

Below are three key steps to building a better lunch table that embraces the global nature of today's information landscape, enables richer collaboration, and supports the delivery of contextually relevant information.

Support Virtual Collaboration

Pharmaceutical research requires the contribution of a host of specialists. The discovery process could be greatly improved if these experts tapped into each other's knowledge bases, but in today's organizational environment, disciplinary groups have become far too isolated. Collaboration at the lunch table is not entirely practical when an organization's head pharmacologist is in Boston and its lead chemist is in Beijing.

With the right technology, however, the lunch table can be re-created in virtual form. Project stakeholders should be able to exchange information, organize research findings, and make collaborative decisions in the context of a single project, rather than a specific discipline. In this way, organizations can more effectively ensure that all stakeholders are working toward a common objective, and at the same time allow for the tangential discoveries that can only be uncovered through the mingling of ideas.

Narrow, discipline-based tools like ELNs create barriers to collaboration by locking important research information within proprietary systems. They can also stifle innovation by imposing information management requirements on researchers, essentially allowing the software to drive the scientific process rather than the other way around.

Thus, a global IT architecture that is robust enough to support end-to-end information access and integration, yet flexible enough to enable local contributors to do what they do best, is key.

Integrate Sources of Knowledge

The knowledge that drives new discoveries comes from many sources. In addition to data generated by current experiments, researchers can speed progress by incorporating relevant information from previous work, scientific literature, and both in-house and publicly available databases.

But as any pharmaceutical researcher knows, the issue of data integration is a thorny one. Data generated by a single chemist or biologist (much less an inter-disciplinary group or the broader industry) is often spread across an array of formats, applications, and proprietary systems. And the volume can span thousands or even millions of possible compounds, assay results, and more. Stakeholders can spend countless hours finding information, preparing data for analysis, and collating, formatting, and distributing results.

Fortunately, next-generation technologies like service-oriented architecture are alleviating these problems by enabling a more unified approach to managing complex scientific information related to drug candidates. A Web services-based IT foundation for scientific information management can support the integration of multiple sources of information in a "plug-and-play" environment, so that organizations can create automated workflows that streamline highly complex research projects.

The flexible nature of this type of architecture is critical; it enables researchers to unlock rich data sources (both inside and outside the organization) without the time and expense involved in writing software for each workflow. In fact, a customized approach would be impossible for IT to support, as there would be no way to keep up with constantly changing user requirements for thousands of different data integration and workflow tasks. With a Web services-based platform, all IT must support only about 50 services. A researcher can then assemble these services on an "as needed" basis for the specific project and discipline requirements. Thus a global, scientifically enabled, services-based architecture can effectively bring back the lunch table in a way that meets the needs of today's modern pharmaceutical enterprises.

Here's an example taken from the realm of life sciences. One practice within translational medicine involves using, or "translating," isolated genomic research into a clinical setting. By leveraging gene expression analysis to pinpoint biomarkers that indicate disease or non-disease states, researchers can improve the effectiveness of drug R&D.

But with more than 20,000 genes existing in a single cell, finding the right biomarker can be like finding a needle in a haystack. Not only do researchers conduct their own gene expression experiments, but they also analyze and compare their findings with data from collaborators, as well as with information found in academic literature, previous clinical trial documents, and patents.

Leveraging trusted science informatics platforms, one company researching translational medicine was able to bring a wealth of disparate data together to speed biomarker identification, and ultimately save a great deal of time and resources during the discovery process. It was only by intersecting information in the right context that the research team was able to zero in on what they needed to speed discovery.

lorem ipsum