The Case For Collaboration

John Montana creates a new bridge between academia and industry.
Feb 01, 2003

The historic divide between academic research and the pharmaceutical industry is disappearing as new research collaborations, drug discovery programs, partnerships, and an evolution in attitudes erases the distinctions that have kept the two at arm's length. Partners HealthCare Systems (PHS), a non-profit healthcare provider in Boston that integrates primary and specialty care, community hospitals, and academic medical centers affiliated with Harvard University, is helping to lead that revolution with programs that are breaking new ground in the arena of academic–industry partnerships. (See "Academic Alliances," PE's Priming the Pipeline supplement, November 2002.)

Far-reaching changes in academia/industry interactions are underway, and the PHS model coupled with the peculiar problems of treating neurodegenerative diseases illustrates how those changes stand to benefit pharma and biotech companies. John Montana, business development manager at Partners' Research & Ventures group, fills in the details about the prototype initiatives and discusses the state of neurodegenerative disease treatment development.

Historically, academic research related to medicine focused on basic science, generally avoiding marketing decisions. Industry, on the other hand, has focused on drug discovery and product development. PHS is bridging the gap between those disparate roles, using its Program in Neurodegenerative diseases (PND) as a test model for promoting applied science and industry partnerships. (See "Discovery: Neurology," PE, February 2001.)

Representing more than 100 neuroscientists and clinicians, the program focuses on building industry relationships in four major disease areas: Alzheimer's, Parkinson's, ALS (Lou Gehrig's disease), and Huntington's disease. At the PHS hospitals, which include the Harvard-affiliated Brigham and Women's and Massachusetts General hospitals, investigators are doing cutting- edge research in basic neurology, neurodegeneration, neuroregeneration, and therapy development. "All of which," Montana maintains, "show promising results and the likelihood of making a quick jump to a drug discovery program." The best example of that translational style of academic research exists at the Laboratory for Drug Discovery in Neurodegeneration (LDDN), a unique academic neuroscientific drug discovery facility founded in 2001 by the PND and now operating within the newly established Harvard Center for Neurodegeneration and Repair.

Montana explains, "Until recently, assay miniaturization, high-throughput screening, medicinal chemistry, and lead compound optimization have been the exclusive province of biopharmaceutical companies. LDDN is one of the earliest-if not the first-academic drug development programs to encompass all of those components and to seek viable lead compounds for eventual clinical testing. We aren't just looking for interesting science; we are developing novel therapeutic agents for currently untreatable diseases."

In contrast to industry drug-screening programs, which address conservative targets that have been rigorously investigated, LDDN focuses on alternative approaches and targets that, though high-risk, offer high rewards in potential breakthrough discoveries. Although the approach, from a market perspective, is too perilous for the pharmaceutical industry, Montana and the LDDN leadership believe that its intellectual merit, benefit to society, and potential fiscal rewards are great enough for an academic center to justify its use. (See "Spreading the Risk," page 72.)

With LDDN, PHS and its affiliated institutions have almost all of the components in place to bring a medication to market, excluding manufacturing, which could be subcontracted. "Although it is the dream of many at PHS to bring a drug to market by ourselves," says Montana, "the most important thing for LDDN is the quick transition of our discoveries into marketed treatments for disease."

To that end, the Research and Ventures group is developing a variety of commercialization models, including the traditional industry partnership. Montana has begun discussions with several pharma companies about a variety of options and is emboldened by their responses: "We're exploring a range of forms for these partnerships to take," he says. One approach is to develop a strategic alliance with a single company, providing it with an exclusive "first look" at LDDN's pre-publication data, while PHS retains the intellectual property rights, publishing rights, and the ability to build its drug library.

Another paradigm has LDDN identify and approach companies on the more typical case-by-case basis, depending on the disease state and lead compound involved. In that model, the collaboration would reflect the development state of a specific project. A late-stage lead compound could be out-licensed directly, while a promising early- stage compound could be jointly developed through an industry-like partnership between the company and LDDN. Companies are eager to buy validated leads that can fit directly into their pipeline, but they appreciate the decreased costs of collaborating on early-stage projects. Montana says there is room for both at LDDN.

lorem ipsum