Toolkit: Safety in Numbers

Mass serialization can protect the drug supply. But the next step forward will come from barcoding, not RFID.
May 31, 2006


Jim Rittenburg
Back in 2004, the FDA was very optimistic about the timeline and development of Radio Frequency Identification (RFID) for use in tracking pharmaceuticals. "RFID...appears to be the most promising approach to reliable product tracking and tracing," the FDA report, "Combating Counterfeit Drugs," stated. By using tags with tiny radio transmitters to track drugs through the supply chain, RFID promised to drastically curb the growing problem of pharmaceutical counterfeiting and diversion. The FDA report went on to predict that companies would use RFID to track every case and pallet, and most units of drugs moving through the supply chain, by the end of 2007.

Fast forward to this year. In February 2006, FDA sponsored a two-day public workshop on electronic track-and-trace technologies, which identified obstacles facing RFID adoption in the United States. By the end of that conference, it was apparent that widespread use of RFID remains many years away, due to several problems: poor read rates, interferences from liquids and metals, multiple tags, lack of a unifying global standard, high cost per tag at the unit level, and political issues related to privacy.


350 "Bollinis"
In remarks made in March at the Parenteral Drug Association's Pharmaceutical Anti-Counterfeiting Forum, FDA Deputy Commissioner Scott Gottlieb called the progress made toward the implementation of RFID "disappointing." At press time, FDA was expected to issue an updated report—chances are, it will take a more moderated view of RFID as a near-term cure-all.

Meanwhile, in the United States, the problem of pharmaceutical counterfeiting shows no signs of abating. In 2003, FDA opened 30 investigations; in 2004, that number rose to 58 cases. Increased vigilance and awareness may explain the spike in the number of reported cases, but the problem of pharmaceutical counterfeiting is increasing as well. Every day it becomes easier to produce authentic-looking packaging and counterfeit products.

This begs the question: What can be done right now to better protect pharmaceuticals from counterfeiting and diversion? This article highlights how companies can use barcodes to begin mass serialization of their products—a necessary step to secure the supply chain—and use that technology as a stopgap on their way to mass deployment of RFID.

Barcoding Benefits

Currently, companies that produce drugs in the United States identify them through a lot number. But the same lot number can apply to tens of thousands—even hundreds of thousands—of units of product from the same manufacturing lot. Any ability to identify, track, or recall individual bottles from the same lot is quickly lost as the units leave manufacturing and enter the distribution chain.

Instead, companies should move toward mass serialization at the unit level. The process is similar to assigning license plates to cars: each vehicle (or drug) is identifiable by an individualized code. By assigning unique codes to each bottle, vial, or blister pack, companies can monitor drugs as they travel through distribution channels to the point of dispensing. This allows companies to identify, track, and recall subsets from the same product lot, enabling better control and management of the supply chain.

While widespread RFID implementation still may be a few years away, barcode technology has made mass serialization technically and economically feasible today. Existing printing technologies can be used to apply the serialized codes to individual units at the point of manufacture. Different barcoding styles, such as the datamatrix code, can carry significant amounts of information while taking up only a small amount of real estate on a label.

In addition to the establishment of a unit-level tracking system, companies can use barcoding to realize some of the other promised benefits of RFID technology, like the establishment of standardized electronic product codes (EPC) and an electronic pedigree. These steps will help build an early warning system to flag counterfeits or diverted products before they reach the patient.

Mix and Match